Stepping Up Our Game: Using ArcGIS Model Builder to Automate Data Handling, Analysis, and Mapping

Developing a Food-borne Disease Outbreak and Alert Model

Introductions

Frank Boylan

CCBC Geospatial Applications Program

Advanced Geospatial Certificate

(July 2013)

SAJ2 Need to include a good headshot of each of you... if you don't have one I can take a picture of each of you for the presentation

note that I put your completion dates in italics.... you can tell the attnedees that you are still in the program but that these are your completion dates Scott Jeffrey, 1/11/2013

The Assignment

- As part of the Intermediate GIS course students are introduced to a wide variety of skills and techniques that students will need to apply on the job.
- Objectives:
 - take an existing scenario and automate the processes involved using ArcGIS Model builder.
 - create a model that can be applied to any geographic location

Given:

You are working as a GIS analyst for the health department in a metropolitan area. In the past 24 hours your office has received a number of identified cases of food-borne Hepatitis A.

Evidence shows that:

- none of the patients ate at restaurants which served alcohol.
- most patients ate lunch within 2-3 blocks of where they worked (500 foot buffer).

Receivables:

A file geodatabase containing the following data:

Address tables Feature classes for metropolitan area

Patients home Street Centerline

Patients work place Sidewalks

Food source locations Buildings, Neighborhoods

Project Deliverables:

Develop a model which will:

A: Geocode the locations of the patients, their workplaces, and food sources in a metropolitan area

B: Break the Food Sources provided by the metropolitan area into five classes:

Bakeries

Restaurants

Groceries

Convenience Stores

No Category

C: Buffer all of the patients work addresses with a 500 foot buffer

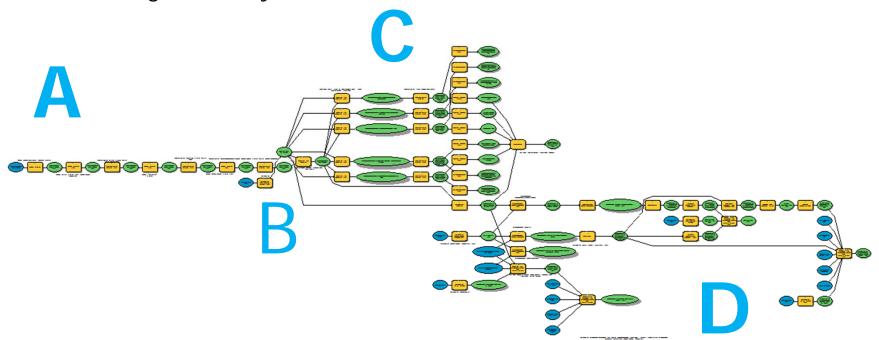
D: Create a table of addresses of Food Source buildings that are completely within the 500 foot buffer that might be the source of the outbreak

E: Create a layer of Food Source locations from [d] above

- A. Create and populate required fields for future use with address locator and geocoding
- B. Streamline existing data (recalculate/re-organize....)
- C. Parse out all food sources into designated categories
- D. Create Address locator for the metropolitan area
- E. Geocoding (e.g. infected patient, work and food source locations)
- F. Select food source location by travel distance (500 feet)
- G. Buffer travel /infected patient distances vs. food sources

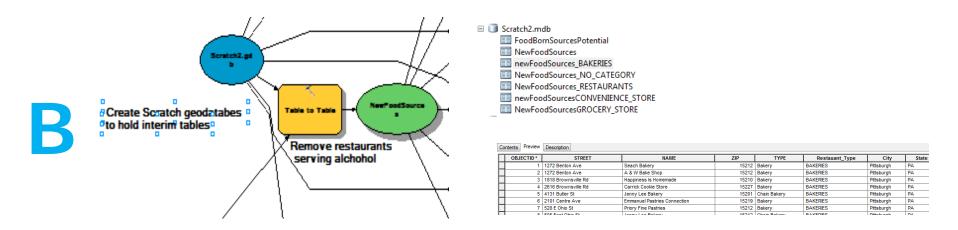
Process

- Add detail fields to prepare data for Geocoding
 - (e.g. city, state etc. and populate fields accordingly)
- Split source table based on type
 - (e.g. table to table and build SQL expression)
- Separate alcohol serving establishments and rejoin tables
 - (append five categories into one table)
- Geocode all tables
- (e.g. metropolitan area create address locator, match filed name to alias name, rematch address to improve accuracy, etc.)
- Buffer workplaces (500 feet)
- Select by location for food sources which meet specified criteria
 - (location must be completely within buffer layer)
- Save to a layer file and place in a gdb

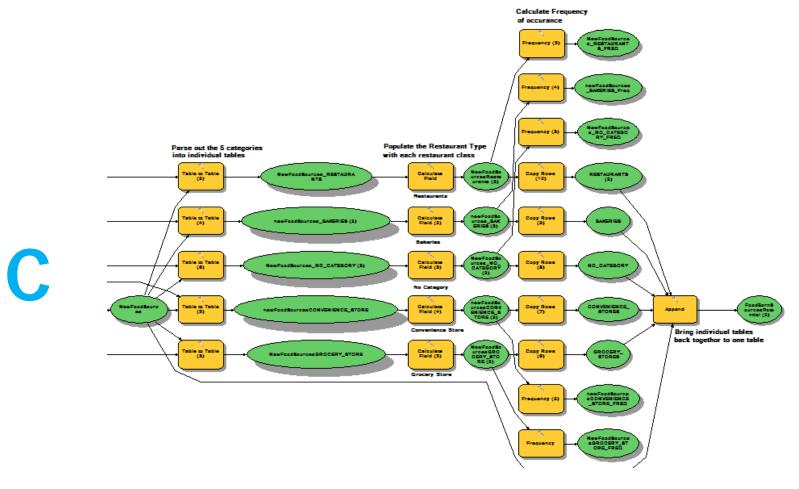

Methodology: overview

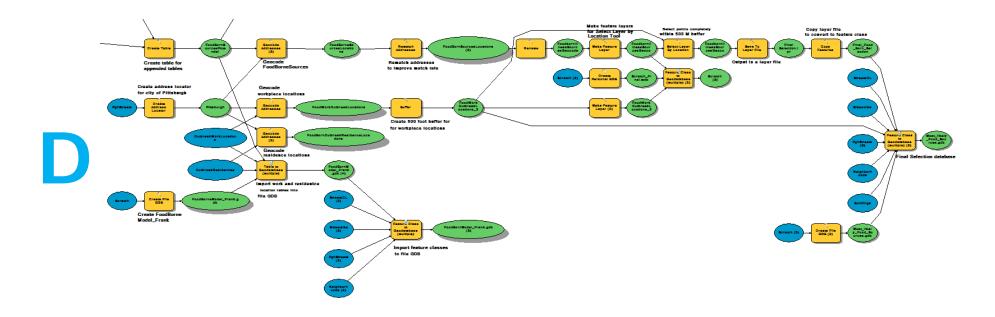

A: Data Preparation

B: Reorganization of data


C: Data Classification

D: Geocoding and Analysis




Data prep (add new fields and populate)

Remove food sources serving alcohol; create series of scratch data bases for each major stage of process

Re-categorize into separate food sources and append

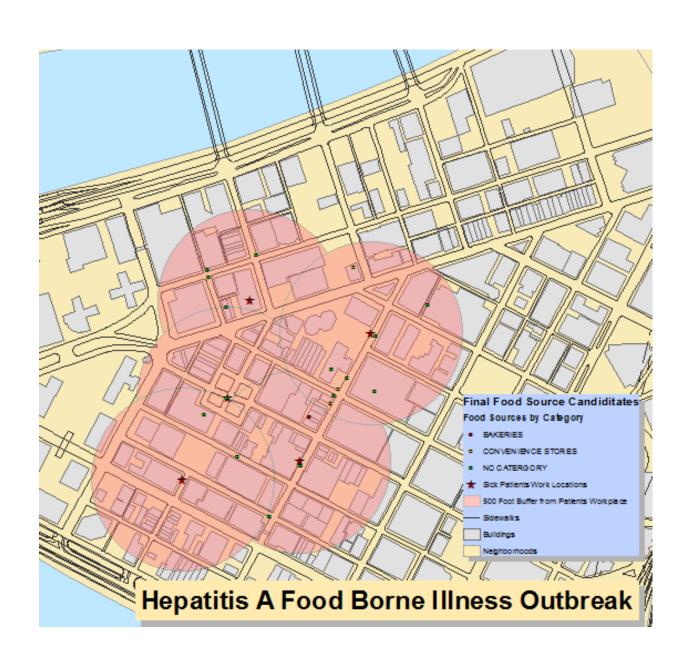
Analysis: Address locator, Geocode, Buffer and Select by location

Problems

- Geocoding
 - Addresses were initially missing fields
 - Address re-matching-hard to get to work
 - Correct selection of geocoding locator type
- Alcohol serving establishment needed to be separated
- Database write errors from testing
- Selection formatting
 - Some tools require particular formats for input
 - Conversions may be needed to pass output on to other tools
- Learning to "think" as the computer

Best practices

A. Design is not linear but circular


- A. Pitfalls or stopping points may force you to rethink previous parts of the model
 - a. Model might not be doing what you intend

B. Step wise refinement

- A. Build and test your model in small increments
 - a. Small segments are easier to work with
 - b. Make sure each segment is working properly before moving forward.
 - c. Place output into successive scratch databases
 - 1. Easier to see what model is actually doing and where errors are occurring.

C. Think through every sub process

A. Manually perform the task that each small "tool" will be doing.

