Lidar Methodology for Verifying Broadband Internet Services Furnished over Wireless Networks in Pennsylvania

Andrew Ross
Senior GIS Analyst
717-399-7007
aross@geographIT.com
Commonwealth of PA has specific Broadband initiatives
  - Broadband internet access critical for economy
  - Pennsylvania maintains inventory of access

Commonwealth has implemented Broadband oversight and funding
  - State Broadband Data and Development Program (SBDD)
    - Funded through ARRA of 2009
  - The Pennsylvania Act 183 of 2004
    - Managed by DCED and Governor’s OA
Broadband Access Inventory

**Pros**
- Infrastructure in place to manage broadband resources
- Ongoing initiatives to obtain independent verification of assets

**Cons**
- Service Providers provide majority of data used to populate inventory
- Concern about accuracy of data reported
Key Challenges

- Service providers may be reticent to share data
- Implement credible application of Lidar data extraction methods to help create “independent” view of broadband access in PA
- Design efficient workflows so budget had enough time to process approximately 2 TB of data and allow room for re-running model, if needed
geographIT’s Role in PA Broadband Verification

- Spring 2010 geographIT hired by Michael Baker Jr. Inc. to verify availability of broadband internet service furnished via wireless networks

Simple Concept
- Generate our own coverage map using independent data
- Overlay new coverage on existing coverage provided by wireless carriers
- Observe any differences
Broadband Coverage Reported by Wireless Carriers (2010)
Approach: Use Viewshed Analysis to Assess Areas in PA that Receive Wireless Tower Signals

Viewshed Analysis Requires:

1. Terrain Surface
2. Wireless Tower Horizontal Locations
3. Wireless Tower Elevations
Offers good approximation for how radio waves propagate in the wireless spectrum (1-2 Ghz)

**Inputs**

- Terrain Surface ……………………… PAMAP Lidar Data
- Horizontal Locations of Towers………. Not available from Carriers, so State provided a dataset
- Elevations of Towers ………………….. Not Available from Carriers, so it was decided to attempt to extract them from PAMAP Lidar Data

**Viewshed = Line of Sight in All Directions**
Lidar Data

- Vertical accuracy at 15 cm on discrete points
- Capable of collecting millions of points per hour
- Produces datasets with much greater density than traditional mapping
- Most systems capable of capturing multiple returns per pulse and/or intensity images
- Supported by rigorous QA/QC – Similar to traditional surveying practices and principles
Laser Beam Produces Multiple Returns, The “Point Cloud”
LAS is binary data format developed in standards-based process by ASPRS

www.lasformat.org

LAS data fields include
- Northing (Y)
- Easting (X)
- Elevation (Z)
- Intensity (reflectance)
- Return Number
- Total Returns for Beam
- Class
LAS Class fields

- **Class 1 (Default)** - a mixture of the remaining points after the ground classification. These would contain cars, buildings, parts of vegetation, etc.
- **Class 2 (Ground)** - points on the bare earth surface.
- **Class 12 (Non-Ground)** - points identified as first of many return or intermediate of many returns from the LIDAR pulse. Most likely vegetation returns or points identified to be not on the ground surface.
- **Class 8 (Model Key)** – a subset of Class 2 points that have been filtered using “educated thinning” process.
- **Class 9 (Hydro)** - points that fall within hydro features as well as are within ± 1.5’ of single line drains.
- **Class 14 (Bridge Decks)** - points that fall within bridge deck polygons captured during the break line compilation process.
- **Class 15 (Roads)** – points that fall within ± 1.5’ of road break lines.
Removed Building Data
Removed Vegetation Data
Remaining: Bare Earth Data
Bare Earth, Everything Else Removed
Reviewed ESRI, USDOF Fusion, QT Modeler, Fugro, etc.

Project Requirements:
- Quickly filter the point cloud (LAS file) based on all of its fields.
- Quickly produce DEM from filtered point cloud
- Aggregate many DEMs into large surface rasters
- Produce vectorized viewshed datasets from large surface rasters
- Ability to process thousands of tiles within a reasonable timeframe
**Terrain Surface Workflow**

Python Script Runs All Of These Processes

- “C” console application filters LAS files
- Fusion cmd line tool ground filter
- Fusion cmd line tool generates DEM
- DEM added to ESRI GeoDB raster dataset using ESRI python gp object

Loop Processes Every Lidar Tile in Study, Generates Individual Surfaces for Each Tower

- **Python** chosen for scripting environment and tool integration
- Developed *my own “C” filtering routine* using LAS format documentation
- DEMs from the filtered point clouds were created using public domain **Fusion** software, maintained by US DOF
- **ESRI** tools were used to produce large aggregate surface rasters
- **ESRI** tools were used to generate vectorized viewshed datasets
I Started with This…
...and Ended Up with This
Lesson Learned: Birds in flight are often captured in LiDAR data.
Lesson Learned: Fusion makes “tents” out of birds flying over water
Lesson Learned: Use NHD to clip “Non Water” points above water bodies
Aggregate DEM from LiDAR Tiles within Transmission Range of a Tower
Python Script Runs All Of These Processes

- “C” console application shrinks LAS files around Tower
- “C” console application finds max elevation in shrunk area, assumed to be tower
- Max elevation used in ESRI gp process to generate Viewshed for a tower

Loop Processes Every every Surface for every Tower
Seeing is Believing: Are Towers / Antennas Visible in LiDAR Data?
Antenna on top of Building
Another Tower
More Towers
Terrain Surface (DEM) + Tower = Viewshed
125 Towers Provided by State
123 Wireless Towers with Transmission Ranges
Wireless Tower Data: 50% locations verified via Lidar/Google Maps and 50% were not “found” in imagery or Lidar

Age of data could be factor
LiDAR Data Was Not Complete For All Counties in PA
3400 LiDAR Tiles within Range of Towers
Holes in Available Lidar Tiles Were Covered with USGS 10 and 30 meter DEMs
End Result
Broadband Coverage Reported by Wireless Carriers (2010)
Thank you!

Andrew Ross
geographIT
1525 Oregon Pike Suite 202
Lancaster PA 17601
717-399-7007
aross@geographit.com