

Lidar Methodology for Verifying Broadband Internet Services Furnished over Wireless Networks in Pennsylvania

Andrew Ross

Senior GIS Analyst 717-399-7007 aross@geographIT.com

Project Overview

- Commonwealth of PA has specific Broadband initiatives
 - Broadband internet access critical for economy
 - Pennsylvania maintains inventory of access
- Commonwealth has implemented Broadband oversight and funding
 - State Broadband Data and Development Program (SBDD)
 - Funded through ARRA of 2009
 - The Pennsylvania Act 183 of 2004
 - Managed by DCED and Governor's OA

Broadband Access Inventory

Pros

- Infrastructure in place to manage broadband resources
- Ongoing initiatives to obtain independent verification of assets

Cons

- Service Providers provide majority of data used to populate inventory
- Concern about accuracy of data reported

Key Challenges

- Service providers may be reticent to share data
- Implement credible application of Lidar data extraction methods to help create "independent" view of broadband access in PA
- Design efficient workflows so budget had enough time to process approximately 2 TB of data and allow room for re-running model, if needed

geographIT's Role in PA Broadband Verification

 Spring 2010 geographIT hired by Michael Baker Jr. Inc. to verify availability of broadband internet service furnished via wireless networks

- Generate our own coverage map using independent data
- Overlay new coverage on existing coverage provided by wireless carriers
- Observe any differences

Broadband Coverage Reported by Wireless Carriers (2010)

Approach: Use Viewshed Analysis to Assess Areas in PA that Receive Wireless Tower Signals Viewshed Analysis Requires:

2. Wireless Tower Horizontal Locations

Viewshed = Line of Sight in All Directions

- Offers good approximation for how radio waves propagate in the wireless spectrum (1-2 Ghz)
- Inputs
 - Terrain Surface PAMAP Lidar Data
 - Horizontal Locations of Towers..... Not available from Carriers, so State provided a dataset
 - Elevations of Towers Not Available from Carriers, so it was decided to attempt to extract them from PAMAP Lidar Data

Lidar Data

- Vertical accuracy at 15 cm on discrete points
- Capable of collecting millions of points per hour
- Produces datasets with much greater density than traditional mapping
- Most systems capable of capturing multiple returns per pulse and/or intensity images
- Supported by rigorous QA/QC – Similar to traditional surveying practices and principles

Laser Beam Produces Multiple Returns, The "Point Cloud"

Wosh98_Riparion_2_FL__UTM_NA083; X_Angle = 25_Z_Angle = 54_Frame = 27 South---North = 159,99000 [5190485.0=5190645.0] meters. FirstPeturns = 46703 West--East = 159,99000 [487440;01-487600,00] meters. LostPeturns = 46710 Highest---Lowest = 84.944713 [217,59977-302,54448] meters

Point Cloud from a 5 Return Lidar Data Collection

Point Cloud stored in LAS Format

- LAS is binary data format developed in standards-based process by ASPRS
- www.lasformat.org
- LAS data fields include
 - Northing (Y)
 - Easting (X)
 - Elevation (Z)
 - Intensity (reflectance)
 - Return Number
 - Total Returns for Beam
 - Class

Point Classification Used for Viewshed

LAS Class fields

- Class 1 (Default) a mixture of the remaining points after the ground classification. These would contain cars, buildings, parts of vegetation, etc.
- Class 2 (Ground) points on the bare earth surface.
- Class 12 (Non-Ground) points identified as first of many return or intermediate of many returns from the LIDAR pulse. Most likely vegetation returns or points identified to be not on the ground surface.
- Class 8 (Model Key) a subset of Class 2 points that have been filtered using "educated thinning" process.
- Class 9 (Hydro) points that fall within hydro features as well as are within ± 1.5' of single line drains.
- Class 14 (Bridge Decks) points that fall within bridge deck polygons captured during the break line compilation process.
- Class 15 (Roads) –points that fall within ± 1.5' of road break lines.

2005 LiDAR - City of Allentown, PA

LAS Data (All Points)

Removed Building Data

Removed Vegetation Data

Remaining: Bare Earth Data

Bare Earth, Everything Else Removed

Partially Cleaned (Automatic Processes) LIDAR Surface

Tools for Mining LAS Data: Options

- Reviewed ESRI, USDOF Fusion, QT Modeler, Fugro, etc.
- Project Requirements:
 - Quickly filter the point cloud (LAS file) based on all of its fields.
 - Quickly produce DEM from filtered point cloud
 - Aggregate many DEMs into large surface rasters
 - Produce vectorized viewshed datasets from large surface rasters
 - Ability to process thousands of tiles within a reasonable timeframe

Terrain Surface Workflow

- **Python** chosen for scripting environment and tool integration
- Developed my own "C" filtering routine using LAS format documentation
- DEMs from the filtered point clouds were created using public domain *Fusion* software, maintained by US DOF
- **ESRI** tools were used to produce large aggregate surface rasters
- **ESRI** tools were used to generate vectorized viewshed datasets

I Started with This...

...and Ended Up with This

Lesson Learned: Birds in flight are often captured in LiDAR data.

Lesson Learned: Fusion makes "tents" out of birds flying over water

Lesson Learned: Use NHD to clip "Non Water" points above water bodies

Aggregate DEM from LiDAR Tiles within Transmission Range of a Tower

Viewshed Workflow

Seeing is Believing: Are Towers / Antennas Visible in LiDAR Data?

Antenna on top of Building

Another Tower

More Towers

Terrain Surface (DEM) + Tower = Viewshed

125 Towers Provided by State

8

123 Wireless Towers with Transmission Ranges

Wireless Tower Data: 50% locations verified via Lidar/Google Maps and 50% were not "found" in imagery or Lidar

Age of data could be factor

LiDAR Data Was Not Complete For All Counties in PA

3400 LiDAR Tiles within Range of Towers

Holes in Available Lidar Tiles Were Covered with USGS 10 and 30 meter DEMs

End Result

Broadband Coverage Reported by Wireless Carriers (2010)

Thank you!

Andrew Ross geographIT 1525 Oregon Pike Suite 202 Lancaster PA 17601 717-399-7007 aross@geographit.com