NASA

High Resolution Carbon Monitoring and Modeling for the State of Maryland A NASA CMS Phase 2 Project

Ralph Dubayah University of Maryland

DEPARTMENT of GEOGRAPHICAL SCIENCES

Introduction

- Urgent need to develop carbon monitoring capabilities
 - Climate treaty verification (REDD+)
 - Changes in land use and climate
 - Rational policy based on prognostic modeling
- Aboveground biomass dynamics key element
 - Large variation in data, methods and models
 - Frameworks for uncertainty analysis poorly developed
 - Difficult to assess US national stocks in transparent and stable fashion

Objectives and Outline

Overview of local, county-scale mapping for NASA's Carbon Monitoring System

- Introduction to Maryland Biomass Pilot Project
- Methodological Approaches
- Summary Phase 1 Results
- Maryland Phase 2 Mapping
- Phase 2 Expected Products and Outreach
- Issues and Considerations

NASA'S Carbon Monitoring System

- NASA Congressional mandate to initiate work towards a CMS (2010 & 2011)
- Two Phase 1 pilot studies
 - Biomass Pilot Product
 - Continental and local-scale projects
 - Integrated Emission/Uptake ("Flux") Product
- Objectives
 - 1. <u>Develop</u> prototype national biomass data products for MRV (Measurement, Reporting, Verification)
 - 2. <u>Demonstrate</u> NASA readiness for MRV using existing in situ and satellite observations

Biomass Pilot Product

- Focus on quantifying terrestrial vegetation carbon stocks for US and globally
 - Continental scale (top-down) approach
 - Local scale (bottom-up) approach (fine resolution)
- Local scale objectives
 - Develop remote sensing protocols
 - Validation for continental scale work
 - Demonstrate efficacy for prognostic ecosystem modeling

Nested Scales of Observations

Space-based

Geographic Setting

Methodological Approach

Sampling and Field Data

- Stratified sampling approach
 - Model-based
 - NLCD 30 m landcover classes (5 strata)
 - Lidar height (3 classes)
 - 300 plots
 - Prism-based, variable radius plots
 - Spring/summer 2011
- USFS: 20 new FIA-type plots & 20 variable radius plots
- Objective to simulate county approaches with constrained resources

Model-based Stratification

Lidar Data

- County-level, wall-to-wall, leaf off
 - Data stale and sparse

High Resolution Tree Canopy Extraction

- Object-based data fusion approach
 - Combines 4-band NAIP imagery and lidar

Landsat Disturbance Data

Statistical Methods

- Least-squares regression
 - All possible subsets (OLS)
 - Bayesian Model Averaging (BMA)
 - Limited to < 4 variables (out of many)</p>
- Regression-tree
 - RandomForest
 - Quantile regression forests

Results

Results

Results

Predicted Biomass

Spatial Variability & Errors

Total Biomass [Tg]

■ Forest
■ Non-Forest

National Biomass Map Validation

CMS National
Max Ent
(Saatchi et al.)

CMS Local BMA (Dubayah et al.)

NBCD (Kellendorfer, et al.)

FIA -based (Wilson et al.)

Resolution 0.022°

Resolution 30 m

Resolution 30 m

Resolution 250 m

Methodological Approach

Prognostic Ecosystem Modeling

ED Model Results

CMS Phase 2 Activities

- NASA awarded new and continued projects
 - **☞ 18 month duration**

"Carbon Monitoring. -- Of the funds provided within the earth science research and analysis activity, the Committee recommends \$10,000,000 to continue efforts for the development of a carbon monitoring system initially funded in fiscal year 2010. The majority of the funds should be directed toward acquisition, field sampling, quantification and development of a prototype Monitoring Reporting and Verification [MRV] system which can provide transparent data products achieving levels of precision and accuracy required by current carbon trading protocols.

Maryland CMS Phase 2 Elements

- Expand from 2 to 24 counties (entire state)
- Carbon modeling using ED model
- New field data collection

 - USFS
- Demonstration of new lidar technology
- Demonstration of new data visualization and delivery system
- County and State agency outreach

Methodological Approach

Partners

- USFS (Rich Birdsey)
 - Revisit FIA plots
 - Resolve forest/non-forest ambiguities
 - Explicit spatial error uncertainty
- University of Vermont (Jarlath O'Neill Dunne)
 - Forest/non-forest 1 m map of entire state
 - Bare earth and canopy height models
- Sigma Space
 - New lidar acquisition using single-photon lidar
- GeoDigital Inc.
 - Demonstration of Grid^Intel system

State Lidar and Field Data

University of Maryland, PG County

University Park, MD

Single Photon Lidar

- Sigma Space developed mid-altitude single photon lidar
 - Visible wavelength, wide-swath
 - First large scale demonstration of single-photon lidar

Grid Intel Online (GIO)

Deliverables

- Tiled and mosaicked canopy height and forest/non-forest maps at 2 m and 30 m resolution
- AGBM maps at 30 m resolution with associated uncertainty maps
- ED-model based carbon and carbon-flux maps at 90 m resolution for Maryland
- ED-model maps of carbon sequestration potential for Maryland under various climate change scenarios
- SPL canopy height map for Alleghany County (?) and derived biomass
- Demonstration of a web-based data visualization and query system
- Assessment of main sources of error and proposed strategies for reducing errors in future deployment of an operational CMS.

County and State Outreach

- State of Vermont implement methodology for one county
- UMD will host one day workshop for county and state agencies
 - Describe data sets and methodologies
 - Provide framework for counties to replicate process
 - Provide free (open-source) software
- Actively seeking collaborations with interested local and state parties

Considerations and Conclusions

- Existing data sets useful for biomass mapping in the U.S. at local scales
 - Requires lidar coverage and field data
 - RMSE high (~33%) at 30 m scale
- Rapid field-survey methods may be appropriate
 - No statistical difference between FIA-style plots and variable radius plots (p=0.05)
- Choice of statistical method not critical
 - True representation of spatial variability challenging
 - Continued development of spatial models and error frameworks

Considerations and Conclusions

- Is high spatial-resolution mapping required?
 - For validation and valuation
 - Maps can be misleading
 - Errors swamp variability in adjacent pixels
 - Effective resolution coarser than 30 m
- County-based lidar data sets reasonable basis of local CMS efforts
 - USGS national lidar mapping
 - Continued fusion of NASA observations

