UMBC Landscape GIS

Outline

- 1. Project Background
- 2. Data Collection
- 3. Results/Analysis
 - a. Diversity
 - b. Pest management
 - c. Relative health
 - d. Biomass
- 4. Uses/Applications

Background

- Began project in June 2014
- Tasked with data collection of UMBC's tree community
- Took it upon myself to figure out ways to analyze tree data and make use out of the investment made for the project

Campus Tree Inventory

Detailed asset database

Preventive Maintenance

Informed decision making

Data Collection

- First started with ArcPad on Trimble Geoexplorer
 - Despite high accuracy capabilities, data collection speed was severely bottlenecked by outdated processing hardware
- Ultimately Shifted to ArcGIS Collector app

Mobile Interface

- ArcGIS Collector App for iOS/Android
- Features
 - Faster processing than arcPad
 - Allows for offline data collection
 - data interoperability
 - Multiple users
 - Ability to assign photo attachments to point features
 - Compatible with Trimble devices (complicated)
 - Overall has an easy to understand user interface

Finished Database

Results: Tree Diversity

Species Diversity Crepe myrtle Figure 1: Pie chart illustrating the many different tree species planted on the UMBC campus. Red maples account for 12% of our tree population, while the other 88% are composed of 117 different species.

Importance of street tree diversity

- Historical losses of species
 - American Chestnut blight
 - Dutch Elm Disease
- Future Pests
 - Emerald ash borer
 - Ambrosia beetle
 - Asian longhorn beetle

Case Study: Emerald Ash Borer

- Beetle that found its way into the U.S. from asia
- Highly destructive to ash trees throughout the midwest and east
- Threatens to kill over 5 billion trees in 25 states
- Locally, in 2009, the US Forest Service estimated there were 212,000 Ash Trees growing in Baltimore area
 - 5,000 of those trees considered to be street trees
- Removal and replacement of just the street trees could cost ~1.6 million dollars along baltimore streets in the next few years

EAB distribution

Source: USDA

Results: Critical Health Zones

figure 4: hotspot analysis used to identify areas of our campus in which trees are in poor health

Results: Zone specific species analysis

- Quick study to see if certain species have a significantly greater average relative health compared to other trees within the same zone
- clipped trees within 250m by 250m zones
- Ran ANOVA test between genus groups and their relative health
- Many zones had no significant difference between species and health
- Zones that did report a significant difference were also analyzed by a tukeyHSD test to see what specific genus had greater relative health than others

Disclaimer- Many environmental factors could play into the assessment of relative health (planting location, soil depth), and thus this assessment can only be used as a source of observation

ilex-Gleditsia Magnolia-Gleditsia Morus-Gleditsia Platanus-Gleditsia 2.714286e+00 0.8510688 4.5775027 0.0003231 3.000000e+00 -0.1362615 6.1362615 0.0733842 1.000000e+00 -4.1026298 6.1026298 0.9998842 2.115385e+00 0.4812352 3.7495340 0.0023111

Results: Biomass

Live Operations Database

- Designed for day-to-day department operations
- Multiple web maps created for different operations, such as pruning schedules and pest scouting
 - Each web map can show and edit specific attributes from the master tree inventory feature class
- Allows for continued data collection for maintenance and pest history on each tree
- Can be used to plan work operations, to plan future maintenance efforts, and to plan future planting efforts

