Challenges Planning in a 3D World

Chris Rotondo, GIS Specialist

Prince George's County Planning Department
The Maryland-National Capital Park and Planning Commission

Starting Point

A 150-page report on implementing 3D technology, prepared by ESC, including:

 Feedback from Planning Agencies

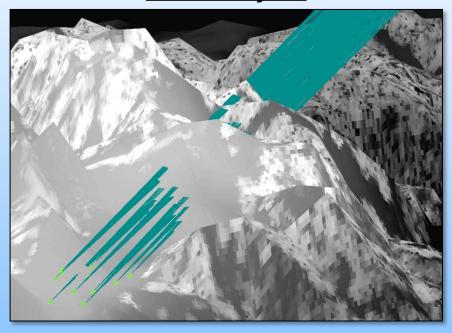
Needs Assessment

Evaluation of 3D Tools

Recommendations

This report is available on the web in PDF format at:

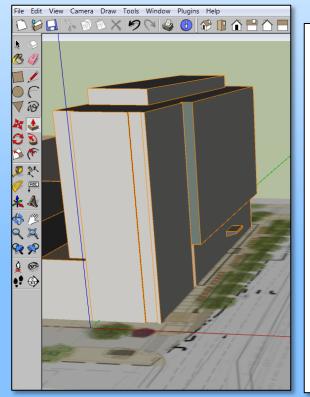
http://www.mncppcapps.org/planning/publications/pdfs/240/Plan for Capacity Building.pdf
Or, it is the first result in Google for the search term: 'Capacity Building 3D'


I. The Best uses for 3D in Planning:

3D Models

- To visualize future development for:
 - Detailed site plans
 - Conceptual community plans
- Assist staff decision making
- Relay information to the public

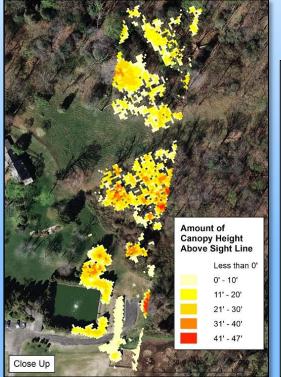
3D Analysis



- Visibility and obstruction analysis
- Determine the impact of future development on existing view conditions

II. The Tool Best Suited for 3D Modeling:

- Cost (free)



Key ● Excellent Support • Good Support • Some Support	1. Community Outreach	2. Visioning & Planning	3. Developing Plans	4. Developing Regulations	5. Urban Design	6. Development Review	7. Visual Impact Analysis	8. Shadow Impact Analysis	9. Quantitative Impact Analysis	10. Build-out Analysis
3D Modeling Tools										
3DS Max	0	0	ı	0	•	•	•		ı	-
ArchiCAD	0	0	0	0		•	0	0	0	_
AutoCAD	0	0	0	0	•	•	0	0	_	_
Google SketchUp	0	•	0	•	•	•	0	0	_	0
Microstation	0	0	0	0	•	•	0	0	0	_
Vector-works	0	0	0	0	•	•	0	0	0	

III. The Tool Best Suited for 3D Analysis:

- Already had in-house
- Access to ArcScene visualization software

Key ● Excellent Support ● Good Support O Some Support	1. Community Outreach	2. Visioning & Planning	3. Developing Plans	4. Developing Regulations	5. Urban Design	6. Development Review	7. Visual Impact Analysis	8. Shadow Impact Analysis	9. Quantitative Impact Analysis	10. Build-out Analysis
3D GIS Tools										
ArcGIS 3D Analyst	0	0	0	0	0	0	0	_	0	_
AutoCAD Map 3D	0	0	0	0	•	•	0	0	0	_
CommunityViz [®] - Scenario 3D	0	0	0	0	0	0	0	_	0	0

IV. Who Should Perform the 3D Work:

- Need specialized technical staff who use 3D software on a regular basis.
- Some planners use 3D, but not regularly enough to efficiently perform modeling or analysis in the timeframe required.
- Should take a few days of up-front training, and a few more days to become familiar with the software before staff are ready for 3D production.
- So far, our workload has only required one staff person to perform all 3D work.

Level of Model Detail

Detailed Model

Textured Model

- Time Intensive
- Complex Process

- Faster & Simpler
- May not be appropriate for all projects

Determining factors: Size & purpose of model, how close it will be viewed, time available

Scene Creation Software

Initially used Google Earth

- Simple to use
- Also free
- Easy import from SketchUp
- Inability to edit Google Earth's default terrain became a problem

A more flexible and customizable application (ESRI ArcScene, in our case) is a better environment for scene creation.

Model Presentation Format

Options:

- Screenshot Image
- Video
- Live Demo

Determined that video was the best option for us.

Allows us to also share the model on the web for public outreach.

All 3D videos we produce are now posted to our 3D Development Google+ site. (Google: "3D Prince George's County" – our site is the first result)

Hardware Requirements

Minimum Requirements to run SketchUp and ESRI ArcScene:

- 2.2 GHz Processor
- 4 GB RAM

- 3 GB Free Hard-disk space
- 3D Class Video Card with min. 512 MB Memory
 with OpenGL 2.0 or higher support

The machine we currently use has a 2.3 GHz Intel Core i7 processor and 8GB RAM.

Cost: ~\$4,000

Storage Needs:

- 3D models and video files can be quite large.
- Average 3D project takes up 1.7 GB of disk space.

Network Demands:

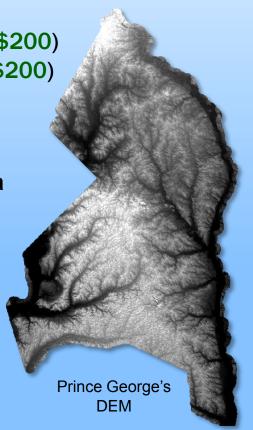
- We store and work on our 3D projects locally.
- Since each project is a single-user operation, there's no reason to run it over the network.

Software & Source Data Needs

Required Software:

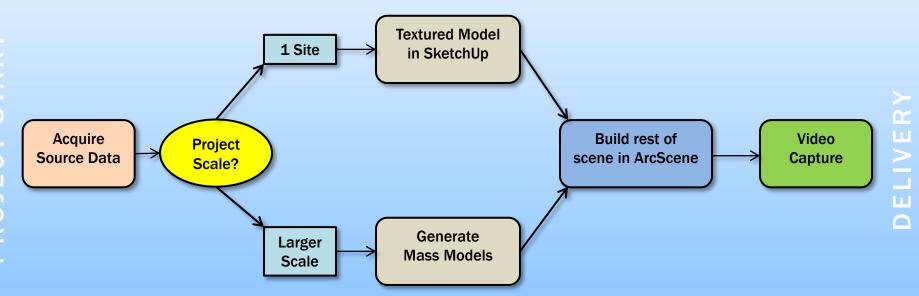
- SketchUp (Annual Cost: free)
- ESRI ArcGIS Pro with 3D Analyst Extension (Annual Cost: \$10k)

Additional Recommended Software:

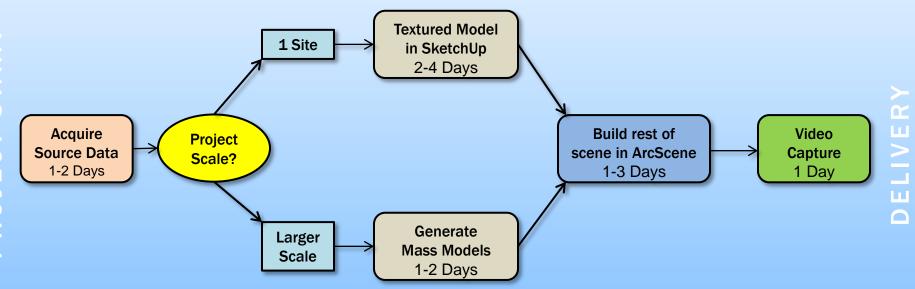

Adobe Acrobat – for processing digital plans (Annual Cost: \$200)

Adobe Photoshop – for image manipulation (Annual Cost: \$200)

Camtasia Studio – for video editing (Annual Cost: \$200)


Required Source Data:

- Digital Elevation Model (DEM) generated from LiDAR data
- Aerial Photography
- Building Footprints with Height Attributes to represent existing buildings
 - Another option: purchase textured building models from a contractor at ~\$2,500 per km²
- Building and Site Plans submitted by developers


Modeling Workflow

Basic Process

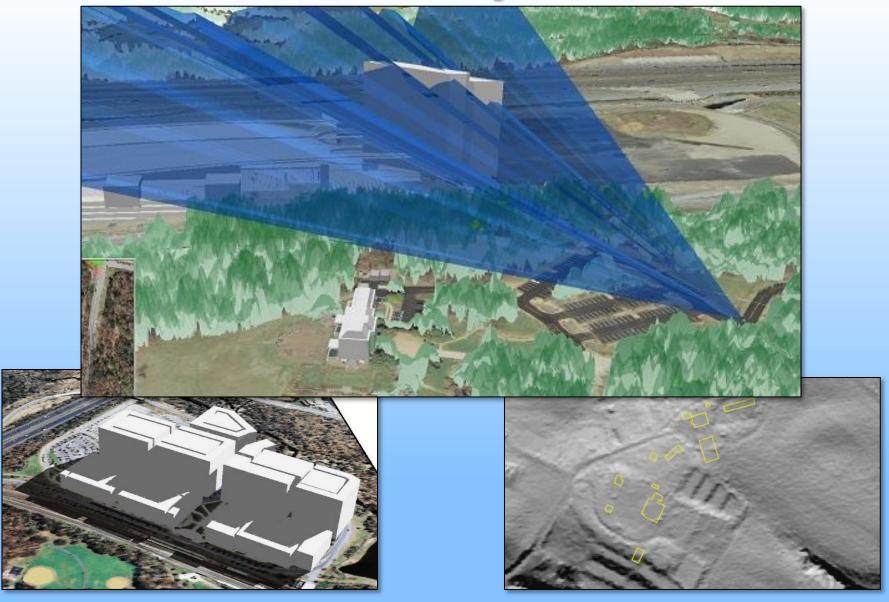
Modeling Workflow

Time Requirements

Total Production Time: 1-2 Weeks per project

Modeling Examples

Maryland Book Exchange



Largo Town Center Conceptual Plan

Crescents at Largo Town Center

3D Analysis

The majority of 3D analysis deals with visibility and obstruction.

3D Analysis

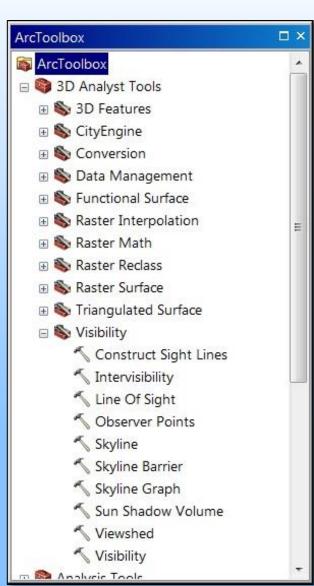
Requirements

Hardware:

Same as Modeling

Staff:

- Should definitely have GIS analysis & ArcGIS background
- Will require less up-front training


Source Data

 LiDAR elevation data for both ground (DEM) and features (DSM)

Time Commitment

- Most analysis can be completed in a day
- Additional days needed to format the analysis output into a presentable map

Potential Challenges

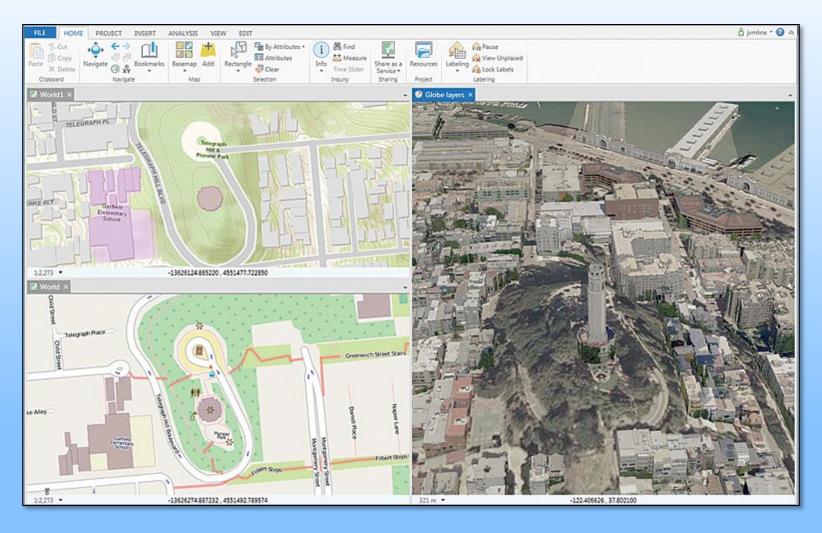
Communications between technical and non-technical staff is essential

- Planners don't know the full capabilities of 3D analysis
- Analysts don't know what would be most helpful to planners
- Need to communicate and basically advertise what types of analysis are available so Planning staff knows what to ask for.

How to display analysis results in a relatable format?

- Sometimes analysis output is a 2D layer that can easily be added to a map
- Other times the output is a 3D dataset. Displaying this in a 2D format can be more difficult.

Future 3D Enhancements


ESRI CityEngine

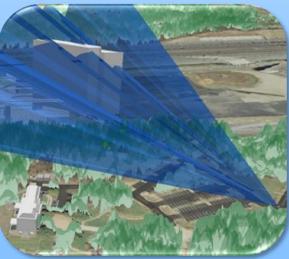
Software-generated photorealistic models for large-scale projects

Future 3D Enhancements

ESRI ArcGIS Pro

Work on GIS data while viewing it in 2D and 3D at the same time

Summary of Challenges


- Getting Started: Since the software is not expensive and most technical staff can handle the work, the biggest challenge to initializing a 3D program is training.
- Time Commitment: will need dedicated staff for 1-2 weeks per project.
- Adjusting to 3D: Some non-technical staff may be reluctant to change and consider adding 3D to be a disruption to the existing workflow.
- Communication: It is necessary for technical and nontechnical staff to work closely and communicate in order to bridge the understanding gap.

Questions?

Feel free to contact me...

Chris Rotondo
GIS Specialist II
Prince George's Planning Department
M-NCPPC
(301) 780-7755
Chris.Rotondo@ppd.mncppc.org

